GET https://kbin.spritesserver.nl/m/memes@lemmy.ml/t/4411/A-meme-for-math-people/comment/43222/votes/down

Security

Token

There is no security token.

Firewall

main Name
Security enabled
Stateless

Configuration

Key Value
provider security.user.provider.concrete.app_user_provider
context main
entry_point App\Security\KbinAuthenticator
user_checker App\Security\UserChecker
access_denied_handler (none)
access_denied_url (none)
authenticators
[
  "two_factor"
  "remember_me"
  "App\Security\KbinAuthenticator"
  "App\Security\FacebookAuthenticator"
  "App\Security\GoogleAuthenticator"
  "App\Security\GithubAuthenticator"
  "App\Security\KeycloakAuthenticator"
]

Listeners

Listener Duration Response
Symfony\Component\Security\Http\Firewall\ChannelListener {#723
  -map: Symfony\Component\Security\Http\AccessMap {#722 …}
  -logger: Monolog\Logger {#783 …}
  -httpPort: 80
  -httpsPort: 443
}
0.00 ms (none)
Symfony\Component\Security\Http\Firewall\ContextListener {#706
  -tokenStorage: Symfony\Component\Security\Core\Authentication\Token\Storage\TokenStorage {#1017 …}
  -sessionKey: "_security_main"
  -logger: Monolog\Logger {#783 …}
  -userProviders: Symfony\Component\DependencyInjection\Argument\RewindableGenerator {#705 …}
  -dispatcher: Symfony\Component\EventDispatcher\Debug\TraceableEventDispatcher {#747 …}
  -registered: false
  -trustResolver: Scheb\TwoFactorBundle\Security\Authentication\AuthenticationTrustResolver {#780 …}
  -sessionTrackerEnabler: Symfony\Component\Security\Core\Authentication\Token\Storage\UsageTrackingTokenStorage::enableUsageTracking(): void {#703 …}
}
0.27 ms (none)
Symfony\Component\Security\Http\Firewall\AuthenticatorManagerListener {#584
  -authenticatorManager: Symfony\Component\Security\Http\Authentication\AuthenticatorManager {#595 …}
}
0.00 ms (none)
Scheb\TwoFactorBundle\Security\Http\Firewall\TwoFactorAccessListener {#582
  -twoFactorFirewallConfig: Scheb\TwoFactorBundle\Security\TwoFactor\TwoFactorFirewallConfig {#842 …}
  -tokenStorage: Symfony\Component\Security\Core\Authentication\Token\Storage\UsageTrackingTokenStorage {#1018 …}
  -twoFactorAccessDecider: Scheb\TwoFactorBundle\Security\Authorization\TwoFactorAccessDecider {#581 …}
}
0.04 ms (none)
Symfony\Component\Security\Http\Firewall\AccessListener {#579
  -tokenStorage: Symfony\Component\Security\Core\Authentication\Token\Storage\UsageTrackingTokenStorage {#1018 …}
  -accessDecisionManager: Symfony\Component\Security\Core\Authorization\TraceableAccessDecisionManager {#937 …}
  -map: Symfony\Component\Security\Http\AccessMap {#722 …}
}
0.00 ms (none)
Symfony\Component\Security\Http\Firewall\LogoutListener {#786
  -tokenStorage: Symfony\Component\Security\Core\Authentication\Token\Storage\UsageTrackingTokenStorage {#1018 …}
  -options: [
    "csrf_parameter" => "_csrf_token"
    "csrf_token_id" => "logout"
    "logout_path" => "app_logout"
  ]
  -httpUtils: Symfony\Component\Security\Http\HttpUtils {#841 …}
  -csrfTokenManager: Symfony\Component\Security\Csrf\CsrfTokenManager {#1015 …}
  -eventDispatcher: Symfony\Component\EventDispatcher\Debug\TraceableEventDispatcher {#747 …}
}
0.00 ms (none)

Authenticators

No authenticators have been recorded. Check previous profiles on your authentication endpoint.

Access Decision

affirmative Strategy
# Voter class
1
"Symfony\Component\Security\Core\Authorization\Voter\AuthenticatedVoter"
2
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
3
"Symfony\Component\Security\Core\Authorization\Voter\RoleHierarchyVoter"
4
"Symfony\Component\Security\Core\Authorization\Voter\ExpressionVoter"
5
"App\Security\Voter\EntryCommentVoter"
6
"App\Security\Voter\EntryVoter"
7
"App\Security\Voter\MagazineVoter"
8
"App\Security\Voter\MessageThreadVoter"
9
"App\Security\Voter\MessageVoter"
10
"App\Security\Voter\NotificationVoter"
11
"App\Security\Voter\OAuth2UserConsentVoter"
12
"App\Security\Voter\PostCommentVoter"
13
"App\Security\Voter\PostVoter"
14
"App\Security\Voter\UserVoter"

Access decision log

# Result Attributes Object
1 DENIED ROLE_USER
null
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
ACCESS ABSTAIN
"Symfony\Component\Security\Core\Authorization\Voter\RoleHierarchyVoter"
ACCESS DENIED
"App\Security\Voter\EntryCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryVoter"
ACCESS ABSTAIN
"App\Security\Voter\MagazineVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageThreadVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageVoter"
ACCESS ABSTAIN
"App\Security\Voter\NotificationVoter"
ACCESS ABSTAIN
"App\Security\Voter\OAuth2UserConsentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostVoter"
ACCESS ABSTAIN
"App\Security\Voter\UserVoter"
ACCESS ABSTAIN
Show voter details
2 DENIED moderate
App\Entity\EntryComment {#1374
  +user: Proxies\__CG__\App\Entity\User {#1370 …}
  +entry: App\Entity\Entry {#1832 …}
  +magazine: App\Entity\Magazine {#313
    +icon: Proxies\__CG__\App\Entity\Image {#294 …}
    +name: "memes@lemmy.ml"
    +title: "memes"
    +description: """
      #### Rules:\n
      \n
      1. Be civil and nice.\n
      2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you *have* to.
      """
    +rules: null
    +subscriptionsCount: 1
    +entryCount: 5926
    +entryCommentCount: 65073
    +postCount: 25
    +postCommentCount: 152
    +isAdult: false
    +customCss: null
    +lastActive: DateTime @1729583092 {#323
      date: 2024-10-22 09:44:52.0 +02:00
    }
    +markedForDeletionAt: null
    +tags: null
    +moderators: Doctrine\ORM\PersistentCollection {#285 …}
    +ownershipRequests: Doctrine\ORM\PersistentCollection {#281 …}
    +moderatorRequests: Doctrine\ORM\PersistentCollection {#270 …}
    +entries: Doctrine\ORM\PersistentCollection {#228 …}
    +posts: Doctrine\ORM\PersistentCollection {#186 …}
    +subscriptions: Doctrine\ORM\PersistentCollection {#248 …}
    +bans: Doctrine\ORM\PersistentCollection {#165 …}
    +reports: Doctrine\ORM\PersistentCollection {#151 …}
    +badges: Doctrine\ORM\PersistentCollection {#129 …}
    +logs: Doctrine\ORM\PersistentCollection {#119 …}
    +awards: Doctrine\ORM\PersistentCollection {#108 …}
    +categories: Doctrine\ORM\PersistentCollection {#95 …}
    -id: 38
    +apId: "memes@lemmy.ml"
    +apProfileId: "https://lemmy.ml/c/memes"
    +apPublicUrl: "https://lemmy.ml/c/memes"
    +apFollowersUrl: "https://lemmy.ml/c/memes/followers"
    +apInboxUrl: "https://lemmy.ml/inbox"
    +apDomain: "lemmy.ml"
    +apPreferredUsername: "memes"
    +apDiscoverable: true
    +apManuallyApprovesFollowers: null
    +privateKey: null
    +publicKey: null
    +apFetchedAt: DateTime @1728572889 {#317
      date: 2024-10-10 17:08:09.0 +02:00
    }
    +apDeletedAt: null
    +apTimeoutAt: null
    +visibility: "visible             "
    +createdAt: DateTimeImmutable @1696428223 {#316
      date: 2023-10-04 16:03:43.0 +02:00
    }
  }
  +image: null
  +parent: null
  +root: null
  +body: """
    for anyone curious, here’s a “constructive” explanation of why *a*^0^ = 1. i’ll also include a “constructive” explanation of why rational exponents are defined the way they are.\n
    \n
    anyways, the equality *a*^0^ = 1 is a consequence of the relation\n
    \n
    *a*^m+1^ = *a*^m^ • *a*.\n
    \n
    to make things a bit simpler, let’s say *a*=2. then we want to make sense of the formula\n
    \n
    2^m+1^ = 2^m^ • 2\n
    \n
    this makes a bit more sense when written out in words: it’s saying that if we multiply 2 by itself *m+1* times, that’s the same as first multiplying 2 by itself *m* times, then multiplying that by 2. for example: 2^3^ = 2^2^ • 2, since these are just two different ways of writing 2 • 2 • 2.\n
    \n
    setting 2^0^ is then what we *have to do* for the formula to make sense when *m* = 0. this is because the formula becomes\n
    \n
    2^0+1^ = 2^0^ • 2^1^.\n
    \n
    because 2^0+1^ = 2 and 2^1^ = 2, we can divide both sides by 2 and get 1 = 2^0^.\n
    \n
    fractional exponents are admittedly more complicated, but here’s a (more handwavey) explanation of them. they’re basically a result of the formula\n
    \n
    (*a*^m^)^n^ = *a*^m•n^\n
    \n
    which is true when *m* and *n* are whole numbers. it’s a bit more difficult to give a proper explanation as to why the above formula is true, but maybe an example would be more helpful anyways. if *m*=2 and *n*=3, it’s basically saying\n
    \n
    (*a*^2^)^3^ = (*a* • *a*)^3^ = (*a* • *a*) • (*a* • *a*) • (*a* • *a*) = *a*^2•3^.\n
    \n
    it’s worth noting that the general case (when *m* and *n* are any whole numbers) can be treated in the same way, it’s just that the notation becomes clunkier and less transparent.\n
    \n
    anyways, we want to *define* fractional exponents so that the formula\n
    \n
    (*a*^r^)^s^ = *a*^r^ • *a*^s^\n
    \n
    is true when *r* and *s* are fractional numbers. we can start out by defining the “simple” fractional exponents of the form *a*^1/n^, where *n* is a whole number. since *n*/*n* = 1, we’re then forced to define *a*^1/n^ so that\n
    \n
    *a* = *a*^1/n•n^ = (*a*^1/n^)^n^.\n
    \n
    what does this mean? let’s consider *n* = 2. then we have to define *a*^1/2^ so that (*a*^1/2^)^2^ = *a*. this means that *a*^1/2^ is the *square root* of *a*. similarly, this means that *a*^1/n^ is the *n*-th root of *a*.\n
    \n
    how do we use this to define arbitrary fractional exponents? we again do it with the formula in mind! we can then just *define*\n
    \n
    *a*^m/n^ = (*a*^1/n^)^m^.\n
    \n
    the expression *a*^1/n^ makes sense because we’ve already defined it, and the expression (*a*^1/n^)^m^ makes sense because we’ve already defined what it means to take exponents by whole numbers. in words, this means that *a*^m/n^ is the *n*-th square root of *a*, multiplied by itself *m* times.\n
    \n
    i think this kind of explanation can be helpful because they show *why* exponents are defined in certain ways: we’re really just defining fractional exponents so that they behave *the same way* as whole number exponents. this makes it easier to remember the definitions, and it also makes it easier to work with them since you can in practice treat them in the “same way” you treat whole number exponents.
    """
  +lang: "en"
  +isAdult: false
  +favouriteCount: 12
  +score: 0
  +lastActive: DateTime @1697143897 {#1605
    date: 2023-10-12 22:51:37.0 +02:00
  }
  +ip: null
  +tags: null
  +mentions: [
    "@hypertown@lemmy.world"
  ]
  +children: Doctrine\ORM\PersistentCollection {#1371 …}
  +nested: Doctrine\ORM\PersistentCollection {#1379 …}
  +votes: Doctrine\ORM\PersistentCollection {#2446 …}
  +reports: Doctrine\ORM\PersistentCollection {#1891 …}
  +favourites: Doctrine\ORM\PersistentCollection {#2409 …}
  +notifications: Doctrine\ORM\PersistentCollection {#2358 …}
  -id: 43222
  -bodyTs: "'+1':45,71,97,162,170 '0':12,35,137,153,161,164,169,187 '1':13,36,166,174,185,365 '1/2':398,402,409 '1/n':355,373,378,381,421,456,461,474 '2':59,69,72,74,93,106,115,118,120,121,122,132,133,134,136,160,163,165,168,171,173,175,182,186,257,266,278,391,403 '3':119,260,267,270,279 'admit':191 'alreadi':467,481 'also':16,559 'anyon':2 'anyway':31,254,314 'arbitrari':436 'basic':205,263 'becom':159,309 'behav':541 'bit':53,78,230 'case':287 'certain':529 'clunkier':310 'complic':193 'consequ':39 'consid':389 'construct':7,19 'curious':3 'defin':26,318,346,371,396,435,452,468,482,527,535 'definit':556 'differ':128 'difficult':232 'divid':178 'easier':552,562 'equal':33 'exampl':117,249 'explan':8,20,200,237,517 'expon':24,189,320,350,438,488,525,537,548,582 'express':459,472 'first':104 'forc':369 'form':353 'formula':68,147,158,210,243,324,445 'fraction':188,319,339,349,437,536 'general':286 'get':184 'give':234 'handwavey':199 'help':253,520 'includ':17 'kind':515 'less':312 'let':55,387 'll':15 'm':44,47,70,73,96,109,152,212,215,221,256,289,457,475,510 'm/n':454,498 'make':50,64,76,149,462,476,550,560 'mayb':247 'mean':386,406,418,485,495 'mind':447 'multipli':92,105,112,507 'n':213,216,223,259,291,357,363,364,379,382,390,424,501 'notat':308 'note':283 'number':226,295,340,361,491,547,581 'practic':571 'proper':236 'r':326,329,335 'ration':23 're':204,367,532 'realli':533 'relat':42 'rememb':554 'result':207 'root':413,426,504 'say':57,88,264 'sens':65,80,150,463,477 'set':135 'show':523 'side':180 'similar':416 'simpl':348 'simpler':54 'sinc':123,362,567 'squar':412,503 'start':343 'take':487 'th':425,502 'thing':51 'think':513 'time':98,110,511 'transpar':313 'treat':298,572,579 'true':219,245,333 'two':127 'use':432 've':466,480 'want':62,316 'way':28,129,302,530,544,577 'whole':225,294,360,490,546,580 'word':85,493 'work':564 'worth':282 'would':250 'write':131 'written':82"
  +ranking: 0
  +commentCount: 0
  +upVotes: 0
  +downVotes: 0
  +visibility: "visible             "
  +apId: "https://lemmy.world/comment/4469803"
  +editedAt: null
  +createdAt: DateTimeImmutable @1697121327 {#1969
    date: 2023-10-12 16:35:27.0 +02:00
  }
}
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryCommentVoter"
ACCESS DENIED
"App\Security\Voter\EntryVoter"
ACCESS ABSTAIN
"App\Security\Voter\MagazineVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageThreadVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageVoter"
ACCESS ABSTAIN
"App\Security\Voter\NotificationVoter"
ACCESS ABSTAIN
"App\Security\Voter\OAuth2UserConsentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostVoter"
ACCESS ABSTAIN
"App\Security\Voter\UserVoter"
ACCESS ABSTAIN
Show voter details
3 DENIED edit
App\Entity\EntryComment {#1374
  +user: Proxies\__CG__\App\Entity\User {#1370 …}
  +entry: App\Entity\Entry {#1832 …}
  +magazine: App\Entity\Magazine {#313
    +icon: Proxies\__CG__\App\Entity\Image {#294 …}
    +name: "memes@lemmy.ml"
    +title: "memes"
    +description: """
      #### Rules:\n
      \n
      1. Be civil and nice.\n
      2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you *have* to.
      """
    +rules: null
    +subscriptionsCount: 1
    +entryCount: 5926
    +entryCommentCount: 65073
    +postCount: 25
    +postCommentCount: 152
    +isAdult: false
    +customCss: null
    +lastActive: DateTime @1729583092 {#323
      date: 2024-10-22 09:44:52.0 +02:00
    }
    +markedForDeletionAt: null
    +tags: null
    +moderators: Doctrine\ORM\PersistentCollection {#285 …}
    +ownershipRequests: Doctrine\ORM\PersistentCollection {#281 …}
    +moderatorRequests: Doctrine\ORM\PersistentCollection {#270 …}
    +entries: Doctrine\ORM\PersistentCollection {#228 …}
    +posts: Doctrine\ORM\PersistentCollection {#186 …}
    +subscriptions: Doctrine\ORM\PersistentCollection {#248 …}
    +bans: Doctrine\ORM\PersistentCollection {#165 …}
    +reports: Doctrine\ORM\PersistentCollection {#151 …}
    +badges: Doctrine\ORM\PersistentCollection {#129 …}
    +logs: Doctrine\ORM\PersistentCollection {#119 …}
    +awards: Doctrine\ORM\PersistentCollection {#108 …}
    +categories: Doctrine\ORM\PersistentCollection {#95 …}
    -id: 38
    +apId: "memes@lemmy.ml"
    +apProfileId: "https://lemmy.ml/c/memes"
    +apPublicUrl: "https://lemmy.ml/c/memes"
    +apFollowersUrl: "https://lemmy.ml/c/memes/followers"
    +apInboxUrl: "https://lemmy.ml/inbox"
    +apDomain: "lemmy.ml"
    +apPreferredUsername: "memes"
    +apDiscoverable: true
    +apManuallyApprovesFollowers: null
    +privateKey: null
    +publicKey: null
    +apFetchedAt: DateTime @1728572889 {#317
      date: 2024-10-10 17:08:09.0 +02:00
    }
    +apDeletedAt: null
    +apTimeoutAt: null
    +visibility: "visible             "
    +createdAt: DateTimeImmutable @1696428223 {#316
      date: 2023-10-04 16:03:43.0 +02:00
    }
  }
  +image: null
  +parent: null
  +root: null
  +body: """
    for anyone curious, here’s a “constructive” explanation of why *a*^0^ = 1. i’ll also include a “constructive” explanation of why rational exponents are defined the way they are.\n
    \n
    anyways, the equality *a*^0^ = 1 is a consequence of the relation\n
    \n
    *a*^m+1^ = *a*^m^ • *a*.\n
    \n
    to make things a bit simpler, let’s say *a*=2. then we want to make sense of the formula\n
    \n
    2^m+1^ = 2^m^ • 2\n
    \n
    this makes a bit more sense when written out in words: it’s saying that if we multiply 2 by itself *m+1* times, that’s the same as first multiplying 2 by itself *m* times, then multiplying that by 2. for example: 2^3^ = 2^2^ • 2, since these are just two different ways of writing 2 • 2 • 2.\n
    \n
    setting 2^0^ is then what we *have to do* for the formula to make sense when *m* = 0. this is because the formula becomes\n
    \n
    2^0+1^ = 2^0^ • 2^1^.\n
    \n
    because 2^0+1^ = 2 and 2^1^ = 2, we can divide both sides by 2 and get 1 = 2^0^.\n
    \n
    fractional exponents are admittedly more complicated, but here’s a (more handwavey) explanation of them. they’re basically a result of the formula\n
    \n
    (*a*^m^)^n^ = *a*^m•n^\n
    \n
    which is true when *m* and *n* are whole numbers. it’s a bit more difficult to give a proper explanation as to why the above formula is true, but maybe an example would be more helpful anyways. if *m*=2 and *n*=3, it’s basically saying\n
    \n
    (*a*^2^)^3^ = (*a* • *a*)^3^ = (*a* • *a*) • (*a* • *a*) • (*a* • *a*) = *a*^2•3^.\n
    \n
    it’s worth noting that the general case (when *m* and *n* are any whole numbers) can be treated in the same way, it’s just that the notation becomes clunkier and less transparent.\n
    \n
    anyways, we want to *define* fractional exponents so that the formula\n
    \n
    (*a*^r^)^s^ = *a*^r^ • *a*^s^\n
    \n
    is true when *r* and *s* are fractional numbers. we can start out by defining the “simple” fractional exponents of the form *a*^1/n^, where *n* is a whole number. since *n*/*n* = 1, we’re then forced to define *a*^1/n^ so that\n
    \n
    *a* = *a*^1/n•n^ = (*a*^1/n^)^n^.\n
    \n
    what does this mean? let’s consider *n* = 2. then we have to define *a*^1/2^ so that (*a*^1/2^)^2^ = *a*. this means that *a*^1/2^ is the *square root* of *a*. similarly, this means that *a*^1/n^ is the *n*-th root of *a*.\n
    \n
    how do we use this to define arbitrary fractional exponents? we again do it with the formula in mind! we can then just *define*\n
    \n
    *a*^m/n^ = (*a*^1/n^)^m^.\n
    \n
    the expression *a*^1/n^ makes sense because we’ve already defined it, and the expression (*a*^1/n^)^m^ makes sense because we’ve already defined what it means to take exponents by whole numbers. in words, this means that *a*^m/n^ is the *n*-th square root of *a*, multiplied by itself *m* times.\n
    \n
    i think this kind of explanation can be helpful because they show *why* exponents are defined in certain ways: we’re really just defining fractional exponents so that they behave *the same way* as whole number exponents. this makes it easier to remember the definitions, and it also makes it easier to work with them since you can in practice treat them in the “same way” you treat whole number exponents.
    """
  +lang: "en"
  +isAdult: false
  +favouriteCount: 12
  +score: 0
  +lastActive: DateTime @1697143897 {#1605
    date: 2023-10-12 22:51:37.0 +02:00
  }
  +ip: null
  +tags: null
  +mentions: [
    "@hypertown@lemmy.world"
  ]
  +children: Doctrine\ORM\PersistentCollection {#1371 …}
  +nested: Doctrine\ORM\PersistentCollection {#1379 …}
  +votes: Doctrine\ORM\PersistentCollection {#2446 …}
  +reports: Doctrine\ORM\PersistentCollection {#1891 …}
  +favourites: Doctrine\ORM\PersistentCollection {#2409 …}
  +notifications: Doctrine\ORM\PersistentCollection {#2358 …}
  -id: 43222
  -bodyTs: "'+1':45,71,97,162,170 '0':12,35,137,153,161,164,169,187 '1':13,36,166,174,185,365 '1/2':398,402,409 '1/n':355,373,378,381,421,456,461,474 '2':59,69,72,74,93,106,115,118,120,121,122,132,133,134,136,160,163,165,168,171,173,175,182,186,257,266,278,391,403 '3':119,260,267,270,279 'admit':191 'alreadi':467,481 'also':16,559 'anyon':2 'anyway':31,254,314 'arbitrari':436 'basic':205,263 'becom':159,309 'behav':541 'bit':53,78,230 'case':287 'certain':529 'clunkier':310 'complic':193 'consequ':39 'consid':389 'construct':7,19 'curious':3 'defin':26,318,346,371,396,435,452,468,482,527,535 'definit':556 'differ':128 'difficult':232 'divid':178 'easier':552,562 'equal':33 'exampl':117,249 'explan':8,20,200,237,517 'expon':24,189,320,350,438,488,525,537,548,582 'express':459,472 'first':104 'forc':369 'form':353 'formula':68,147,158,210,243,324,445 'fraction':188,319,339,349,437,536 'general':286 'get':184 'give':234 'handwavey':199 'help':253,520 'includ':17 'kind':515 'less':312 'let':55,387 'll':15 'm':44,47,70,73,96,109,152,212,215,221,256,289,457,475,510 'm/n':454,498 'make':50,64,76,149,462,476,550,560 'mayb':247 'mean':386,406,418,485,495 'mind':447 'multipli':92,105,112,507 'n':213,216,223,259,291,357,363,364,379,382,390,424,501 'notat':308 'note':283 'number':226,295,340,361,491,547,581 'practic':571 'proper':236 'r':326,329,335 'ration':23 're':204,367,532 'realli':533 'relat':42 'rememb':554 'result':207 'root':413,426,504 'say':57,88,264 'sens':65,80,150,463,477 'set':135 'show':523 'side':180 'similar':416 'simpl':348 'simpler':54 'sinc':123,362,567 'squar':412,503 'start':343 'take':487 'th':425,502 'thing':51 'think':513 'time':98,110,511 'transpar':313 'treat':298,572,579 'true':219,245,333 'two':127 'use':432 've':466,480 'want':62,316 'way':28,129,302,530,544,577 'whole':225,294,360,490,546,580 'word':85,493 'work':564 'worth':282 'would':250 'write':131 'written':82"
  +ranking: 0
  +commentCount: 0
  +upVotes: 0
  +downVotes: 0
  +visibility: "visible             "
  +apId: "https://lemmy.world/comment/4469803"
  +editedAt: null
  +createdAt: DateTimeImmutable @1697121327 {#1969
    date: 2023-10-12 16:35:27.0 +02:00
  }
}
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryCommentVoter"
ACCESS DENIED
"App\Security\Voter\EntryVoter"
ACCESS ABSTAIN
"App\Security\Voter\MagazineVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageThreadVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageVoter"
ACCESS ABSTAIN
"App\Security\Voter\NotificationVoter"
ACCESS ABSTAIN
"App\Security\Voter\OAuth2UserConsentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostVoter"
ACCESS ABSTAIN
"App\Security\Voter\UserVoter"
ACCESS ABSTAIN
Show voter details
4 DENIED moderate
App\Entity\EntryComment {#1374
  +user: Proxies\__CG__\App\Entity\User {#1370 …}
  +entry: App\Entity\Entry {#1832 …}
  +magazine: App\Entity\Magazine {#313
    +icon: Proxies\__CG__\App\Entity\Image {#294 …}
    +name: "memes@lemmy.ml"
    +title: "memes"
    +description: """
      #### Rules:\n
      \n
      1. Be civil and nice.\n
      2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you *have* to.
      """
    +rules: null
    +subscriptionsCount: 1
    +entryCount: 5926
    +entryCommentCount: 65073
    +postCount: 25
    +postCommentCount: 152
    +isAdult: false
    +customCss: null
    +lastActive: DateTime @1729583092 {#323
      date: 2024-10-22 09:44:52.0 +02:00
    }
    +markedForDeletionAt: null
    +tags: null
    +moderators: Doctrine\ORM\PersistentCollection {#285 …}
    +ownershipRequests: Doctrine\ORM\PersistentCollection {#281 …}
    +moderatorRequests: Doctrine\ORM\PersistentCollection {#270 …}
    +entries: Doctrine\ORM\PersistentCollection {#228 …}
    +posts: Doctrine\ORM\PersistentCollection {#186 …}
    +subscriptions: Doctrine\ORM\PersistentCollection {#248 …}
    +bans: Doctrine\ORM\PersistentCollection {#165 …}
    +reports: Doctrine\ORM\PersistentCollection {#151 …}
    +badges: Doctrine\ORM\PersistentCollection {#129 …}
    +logs: Doctrine\ORM\PersistentCollection {#119 …}
    +awards: Doctrine\ORM\PersistentCollection {#108 …}
    +categories: Doctrine\ORM\PersistentCollection {#95 …}
    -id: 38
    +apId: "memes@lemmy.ml"
    +apProfileId: "https://lemmy.ml/c/memes"
    +apPublicUrl: "https://lemmy.ml/c/memes"
    +apFollowersUrl: "https://lemmy.ml/c/memes/followers"
    +apInboxUrl: "https://lemmy.ml/inbox"
    +apDomain: "lemmy.ml"
    +apPreferredUsername: "memes"
    +apDiscoverable: true
    +apManuallyApprovesFollowers: null
    +privateKey: null
    +publicKey: null
    +apFetchedAt: DateTime @1728572889 {#317
      date: 2024-10-10 17:08:09.0 +02:00
    }
    +apDeletedAt: null
    +apTimeoutAt: null
    +visibility: "visible             "
    +createdAt: DateTimeImmutable @1696428223 {#316
      date: 2023-10-04 16:03:43.0 +02:00
    }
  }
  +image: null
  +parent: null
  +root: null
  +body: """
    for anyone curious, here’s a “constructive” explanation of why *a*^0^ = 1. i’ll also include a “constructive” explanation of why rational exponents are defined the way they are.\n
    \n
    anyways, the equality *a*^0^ = 1 is a consequence of the relation\n
    \n
    *a*^m+1^ = *a*^m^ • *a*.\n
    \n
    to make things a bit simpler, let’s say *a*=2. then we want to make sense of the formula\n
    \n
    2^m+1^ = 2^m^ • 2\n
    \n
    this makes a bit more sense when written out in words: it’s saying that if we multiply 2 by itself *m+1* times, that’s the same as first multiplying 2 by itself *m* times, then multiplying that by 2. for example: 2^3^ = 2^2^ • 2, since these are just two different ways of writing 2 • 2 • 2.\n
    \n
    setting 2^0^ is then what we *have to do* for the formula to make sense when *m* = 0. this is because the formula becomes\n
    \n
    2^0+1^ = 2^0^ • 2^1^.\n
    \n
    because 2^0+1^ = 2 and 2^1^ = 2, we can divide both sides by 2 and get 1 = 2^0^.\n
    \n
    fractional exponents are admittedly more complicated, but here’s a (more handwavey) explanation of them. they’re basically a result of the formula\n
    \n
    (*a*^m^)^n^ = *a*^m•n^\n
    \n
    which is true when *m* and *n* are whole numbers. it’s a bit more difficult to give a proper explanation as to why the above formula is true, but maybe an example would be more helpful anyways. if *m*=2 and *n*=3, it’s basically saying\n
    \n
    (*a*^2^)^3^ = (*a* • *a*)^3^ = (*a* • *a*) • (*a* • *a*) • (*a* • *a*) = *a*^2•3^.\n
    \n
    it’s worth noting that the general case (when *m* and *n* are any whole numbers) can be treated in the same way, it’s just that the notation becomes clunkier and less transparent.\n
    \n
    anyways, we want to *define* fractional exponents so that the formula\n
    \n
    (*a*^r^)^s^ = *a*^r^ • *a*^s^\n
    \n
    is true when *r* and *s* are fractional numbers. we can start out by defining the “simple” fractional exponents of the form *a*^1/n^, where *n* is a whole number. since *n*/*n* = 1, we’re then forced to define *a*^1/n^ so that\n
    \n
    *a* = *a*^1/n•n^ = (*a*^1/n^)^n^.\n
    \n
    what does this mean? let’s consider *n* = 2. then we have to define *a*^1/2^ so that (*a*^1/2^)^2^ = *a*. this means that *a*^1/2^ is the *square root* of *a*. similarly, this means that *a*^1/n^ is the *n*-th root of *a*.\n
    \n
    how do we use this to define arbitrary fractional exponents? we again do it with the formula in mind! we can then just *define*\n
    \n
    *a*^m/n^ = (*a*^1/n^)^m^.\n
    \n
    the expression *a*^1/n^ makes sense because we’ve already defined it, and the expression (*a*^1/n^)^m^ makes sense because we’ve already defined what it means to take exponents by whole numbers. in words, this means that *a*^m/n^ is the *n*-th square root of *a*, multiplied by itself *m* times.\n
    \n
    i think this kind of explanation can be helpful because they show *why* exponents are defined in certain ways: we’re really just defining fractional exponents so that they behave *the same way* as whole number exponents. this makes it easier to remember the definitions, and it also makes it easier to work with them since you can in practice treat them in the “same way” you treat whole number exponents.
    """
  +lang: "en"
  +isAdult: false
  +favouriteCount: 12
  +score: 0
  +lastActive: DateTime @1697143897 {#1605
    date: 2023-10-12 22:51:37.0 +02:00
  }
  +ip: null
  +tags: null
  +mentions: [
    "@hypertown@lemmy.world"
  ]
  +children: Doctrine\ORM\PersistentCollection {#1371 …}
  +nested: Doctrine\ORM\PersistentCollection {#1379 …}
  +votes: Doctrine\ORM\PersistentCollection {#2446 …}
  +reports: Doctrine\ORM\PersistentCollection {#1891 …}
  +favourites: Doctrine\ORM\PersistentCollection {#2409 …}
  +notifications: Doctrine\ORM\PersistentCollection {#2358 …}
  -id: 43222
  -bodyTs: "'+1':45,71,97,162,170 '0':12,35,137,153,161,164,169,187 '1':13,36,166,174,185,365 '1/2':398,402,409 '1/n':355,373,378,381,421,456,461,474 '2':59,69,72,74,93,106,115,118,120,121,122,132,133,134,136,160,163,165,168,171,173,175,182,186,257,266,278,391,403 '3':119,260,267,270,279 'admit':191 'alreadi':467,481 'also':16,559 'anyon':2 'anyway':31,254,314 'arbitrari':436 'basic':205,263 'becom':159,309 'behav':541 'bit':53,78,230 'case':287 'certain':529 'clunkier':310 'complic':193 'consequ':39 'consid':389 'construct':7,19 'curious':3 'defin':26,318,346,371,396,435,452,468,482,527,535 'definit':556 'differ':128 'difficult':232 'divid':178 'easier':552,562 'equal':33 'exampl':117,249 'explan':8,20,200,237,517 'expon':24,189,320,350,438,488,525,537,548,582 'express':459,472 'first':104 'forc':369 'form':353 'formula':68,147,158,210,243,324,445 'fraction':188,319,339,349,437,536 'general':286 'get':184 'give':234 'handwavey':199 'help':253,520 'includ':17 'kind':515 'less':312 'let':55,387 'll':15 'm':44,47,70,73,96,109,152,212,215,221,256,289,457,475,510 'm/n':454,498 'make':50,64,76,149,462,476,550,560 'mayb':247 'mean':386,406,418,485,495 'mind':447 'multipli':92,105,112,507 'n':213,216,223,259,291,357,363,364,379,382,390,424,501 'notat':308 'note':283 'number':226,295,340,361,491,547,581 'practic':571 'proper':236 'r':326,329,335 'ration':23 're':204,367,532 'realli':533 'relat':42 'rememb':554 'result':207 'root':413,426,504 'say':57,88,264 'sens':65,80,150,463,477 'set':135 'show':523 'side':180 'similar':416 'simpl':348 'simpler':54 'sinc':123,362,567 'squar':412,503 'start':343 'take':487 'th':425,502 'thing':51 'think':513 'time':98,110,511 'transpar':313 'treat':298,572,579 'true':219,245,333 'two':127 'use':432 've':466,480 'want':62,316 'way':28,129,302,530,544,577 'whole':225,294,360,490,546,580 'word':85,493 'work':564 'worth':282 'would':250 'write':131 'written':82"
  +ranking: 0
  +commentCount: 0
  +upVotes: 0
  +downVotes: 0
  +visibility: "visible             "
  +apId: "https://lemmy.world/comment/4469803"
  +editedAt: null
  +createdAt: DateTimeImmutable @1697121327 {#1969
    date: 2023-10-12 16:35:27.0 +02:00
  }
}
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryCommentVoter"
ACCESS DENIED
"App\Security\Voter\EntryVoter"
ACCESS ABSTAIN
"App\Security\Voter\MagazineVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageThreadVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageVoter"
ACCESS ABSTAIN
"App\Security\Voter\NotificationVoter"
ACCESS ABSTAIN
"App\Security\Voter\OAuth2UserConsentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostVoter"
ACCESS ABSTAIN
"App\Security\Voter\UserVoter"
ACCESS ABSTAIN
Show voter details
5 DENIED edit
App\Entity\Magazine {#313
  +icon: Proxies\__CG__\App\Entity\Image {#294 …}
  +name: "memes@lemmy.ml"
  +title: "memes"
  +description: """
    #### Rules:\n
    \n
    1. Be civil and nice.\n
    2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you *have* to.
    """
  +rules: null
  +subscriptionsCount: 1
  +entryCount: 5926
  +entryCommentCount: 65073
  +postCount: 25
  +postCommentCount: 152
  +isAdult: false
  +customCss: null
  +lastActive: DateTime @1729583092 {#323
    date: 2024-10-22 09:44:52.0 +02:00
  }
  +markedForDeletionAt: null
  +tags: null
  +moderators: Doctrine\ORM\PersistentCollection {#285 …}
  +ownershipRequests: Doctrine\ORM\PersistentCollection {#281 …}
  +moderatorRequests: Doctrine\ORM\PersistentCollection {#270 …}
  +entries: Doctrine\ORM\PersistentCollection {#228 …}
  +posts: Doctrine\ORM\PersistentCollection {#186 …}
  +subscriptions: Doctrine\ORM\PersistentCollection {#248 …}
  +bans: Doctrine\ORM\PersistentCollection {#165 …}
  +reports: Doctrine\ORM\PersistentCollection {#151 …}
  +badges: Doctrine\ORM\PersistentCollection {#129 …}
  +logs: Doctrine\ORM\PersistentCollection {#119 …}
  +awards: Doctrine\ORM\PersistentCollection {#108 …}
  +categories: Doctrine\ORM\PersistentCollection {#95 …}
  -id: 38
  +apId: "memes@lemmy.ml"
  +apProfileId: "https://lemmy.ml/c/memes"
  +apPublicUrl: "https://lemmy.ml/c/memes"
  +apFollowersUrl: "https://lemmy.ml/c/memes/followers"
  +apInboxUrl: "https://lemmy.ml/inbox"
  +apDomain: "lemmy.ml"
  +apPreferredUsername: "memes"
  +apDiscoverable: true
  +apManuallyApprovesFollowers: null
  +privateKey: null
  +publicKey: null
  +apFetchedAt: DateTime @1728572889 {#317
    date: 2024-10-10 17:08:09.0 +02:00
  }
  +apDeletedAt: null
  +apTimeoutAt: null
  +visibility: "visible             "
  +createdAt: DateTimeImmutable @1696428223 {#316
    date: 2023-10-04 16:03:43.0 +02:00
  }
}
"Scheb\TwoFactorBundle\Security\Authorization\Voter\TwoFactorInProgressVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\EntryVoter"
ACCESS ABSTAIN
"App\Security\Voter\MagazineVoter"
ACCESS DENIED
"App\Security\Voter\MessageThreadVoter"
ACCESS ABSTAIN
"App\Security\Voter\MessageVoter"
ACCESS ABSTAIN
"App\Security\Voter\NotificationVoter"
ACCESS ABSTAIN
"App\Security\Voter\OAuth2UserConsentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostCommentVoter"
ACCESS ABSTAIN
"App\Security\Voter\PostVoter"
ACCESS ABSTAIN
"App\Security\Voter\UserVoter"
ACCESS ABSTAIN
Show voter details