6÷2(1+2)

zeta.one/viral-math/

I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.

It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)

brisk,

My only complaint is the suggestion that engineers like to be clear. My undergrad classes included far too many things like 2 cos 2 x sin y

fallingcats,

I’d say engineers like to be exact, but they like being lazy even more

comrade_pibb,
@comrade_pibb@hexbear.net avatar

Hey this is interesting, thanks for sharing!

Alcatorda,

Hi! Nice blog post. Since you asked for feedback I’ll point out the one thing I didn’t really understand. You explain the difference between the calculators by showing excerpts from the manuals and you highlight that in the first manual, implicit multiplication is prioritised. But the text you underlined only refers to implicit multiplication involving special expressions(?) like pi, e, sqrt or log, and nothing about “regular” implicit multiplication like 2(1+3). So while your photos of the calculator results are great proof that the two models use a different order of operations, to me the manuals were a bit confusing since they did not actually seem to prove your point for the example math problems you are discussing. Or maybe I missed something?

wischi,

You are right the manual isn’t very clear here. My guess is that parentheses are also considered Type B functions. I actually chose those calculators because I have them here and can test things and because they split the implicit multiplication priority. Most other calculators just state “implicit multiplication” and that’s it.

My guess is that the list of Type B functions is not complete but implicit multiplication with parentheses should be considered important enough for it to be documented.

Pulptastic,

Negative reviews for the calculator that does OOO wrong.

wren,
@wren@sopuli.xyz avatar

Great read! Easy for everyone to understand, but also thorough. I loved the breakdown into the calculators functionality

wischi,

Thank you for taking the time reading it.

CrushKillDestroySwag,

Very cool article on an aspect of math that I’ve never thought too deeply about before 👍

Perfide, (edited )

You lost me on the section when you started going into different calculators, but I read the rest of the post. Well written even if I ultimately disagree!

The reason imo there is ambiguity with these math problems is bad/outdated teaching. The way I was taught pemdas, you always do the left-most operations first, while otherwise still following the ordering.

Doing this for 6÷2(1+2), there is no ambiguity that the answer is 9. You do your parentheses first as always, 6÷2(3), and then since division and multiplication are equal in ordering weight, you do the division first because it’s the left most operation, leaving us 3(3), which is of course 9.

If someone wrote this equation with the intention that the answer is 1, they wrote the equation wrong, simple as that.

abraxas, (edited )

There has apparently been historical disagreement over whether 6÷2(3) is equivalent to 6÷2x3

As a logician instead of a mathemetician, the answer is “they’re both wrong because they have proven themselves ambiguous”. Of course, my answer would be RPN to be a jerk or just have more parens to be a programmer

wischi,

The calculator section is actually pretty important, because it shows how there is no consensus. Sharp is especially interesting with respect to your comment because all scientific Sharp calculators say it’s 1. For all the other brands for hardware calculators there are roughly 50:50 with saying 1 and 9.

So I’m not sure if you are suggesting that thousands of experts and hundreds of engineers at Casio, Texas Instruments, HP and Sharp got it wrong and you got it right?

There really is no agreed upon standard even amongst experts.

kogasa,
@kogasa@programming.dev avatar

Hi, expert here, calculators have nothing to do with it. There’s an agreed upon “Order of Operations” that we teach to kids, and there’s a mutual agreement that it’s only approximately correct. Calculators have to pick an explicit parsing algorithm, humans don’t have to and so they don’t. I don’t look to a dictionary to tell me what I mean when I speak to another human.

fallingcats, (edited )

Thanks for putting my thoughts into words, that’s exactly why I hate math. It was supposed to be the logical one, but since it only needs to be parsed by humans it failed at even that. It’s just conventions upon conventions to the point where it’s notably different from one teacher/professor to the next.

I guess you can tell why I went into comp-sci (and also why I’m struggling there too)

Perfide,

No, those companies aren’t wrong, but they’re not entirely right either. The answer to “6 ÷ 2(1+2)” is 1 on those calculators because that is a badly written equation and you(not literally you, to be clear) should feel bad for writing it, and the calculators can’t handle it with their rigid hardcoded logic. The ones that do give the correct answer of 9 on that equation will get other equations wrong that it shouldn’t be, again because the logic is hardcoded.

That doesn’t change the fact that that equation worked out on paper is absolutely 9 based on modern rules of math. Calculate the parentheses first, you then have 6 ÷ 2(3). We could solve from here, but to make the point extra clear I’m going to actually expand this out to explicit multiplication. “2(3)” is the same as “2 x 3”, so we can rewrite the equation as “6 ÷ 2 x 3”. All operators now inarguably have equal precedence, which means the only factor left in which order to do the operations is left to right, and thus division first. The answer can only be 9.

MeetInPotatoes,

If you’d ever taken any advanced math, you’d see that the answer is 1 all day. The implicit multiplication is done before the division because anyone taking advanced math would see 2(1+2) as a term that must be resolved first. The answer still lies in the ambiguity of the way the problem is written though. If the author used fractions instead of that stupid division symbol, there would be no ambiguity. It’s either 6/2 x 3 = 9 or [6/(2x3)] = 1. Comment formatting aside, if someone put 6 in the numerator, and then did or did NOT put all the rest in the denominator underneath a horizontal bar, it would be obvious.

TL;DR It’s still a formatting issue, but 9 is definitely not the clear and only answer.

atomicorange,

Great write up! The answer is use parentheses or fractions and stop wasting everyone’s time 😅

wischi,

That’s actually a great way of putting it 🤣

friendly_ghost,

That blog post was awesome, thanks for doing that work and letting us know about it!

wischi,

Thank you for taking the time to read it.

frezik, (edited )

1 2 + 2 * 6 /

What’s the problem?

Also, you forgot my inlaws, one of whom believes the answer is 5.

Buck,

It’s actually 6 2 / 1 2 + *

Klear,

Found the reverse Pole.

wischi,

I’m not sure if you read the post yet but I also have a short section about alternative notations which are less ambiguous or never ambiguous. RPN has the same issue as most notations that are never ambiguous namely that it’s hard to read - especially for big expressions.

deadbeef79000,

It’s three cubits in diameter and no ne cubits around.

Therefore π is three.

Fackz.

panicnow,

This is a very nice piece that had so much information I did not know. Toward the top of the article I was wishing for footnotes, references or something that would indicate it was not just your opinion, but as I got further into the piece you provided so many great references. I thought the calculator manuals were particularly accessible and convincing. Thanks for a great read!

dangblingus,

I tried explaining this to people on facebook in 2010 or so.

“You must be fun at parties!”

Bitch, i dont want to attend your lame ass party where people think they know how math works.

Portosian,

Honestly, I do disagree that the question is ambiguous. The lack of parenthetical separation is itself a choice that informs order of operations. If the answer was meant to be 9, then the 6/2 would be isolated in parenthesis.

chuckleslord,

It’s covered in the blog, but this is likely due to a bias towards Strong Juxtaposition rules for parentheses rather than Weak. It’s common for those who learned math into advanced algebra/ beginning Calc and beyond, since that’s the usual method for higher math education. But it isn’t “correct”, it’s one of two standard ways of doing it. The ambiguity in the question is intentional and pervasive.

Portosian,

My argument is specifically that using no separation shows intent for which way to interpret and should not default to weak juxtaposition.

Choosing not to use (6/2)(1+2) implies to me to use the only other interpretation.

There’s also the difference between 6/2(1+2) and 6/2*(1+2). I think the post has a point for the latter, but not the former.

chuckleslord,

I don’t know what you want, man. The blog’s goal is to describe the problem and why it comes about and your response is “Following my logic, there is no confusion!” when there clearly is confusion in the wider world here. The blog does a good job of narrowing down why there’s confusion, you’re response doesn’t add anything or refute anything. It’s just… you bragging? I’m not certain what your point is.

Portosian,

None of this has a point. We’re talking over a shitpost rant about common use of math symbols. Even the conclusion boils down to it being a context dependent matter of preference. I’m just disagreeing that the original question as posed should be interpreted with weak juxtaposition.

atomicorange, (edited )

I originally had the same reasoning but came to the opposite conclusion. Multiplication and division have the same precedence, so I read the operations from left to right unless noted otherwise with parentheses. Thus:

6/2=3

3(1+2)=9

For me to read the whole of 2(1+2) as the denominator in a fraction I would expect it to be isolated in parentheses: 6/(2(1+2)).

Reading the blog post, I understand the ambiguity now, but i’m still fascinated that we had the same criticism (no parentheses implies intent) but had opposite conclusions.

wischi,

Did you read the blog post?

Kowowow,

Nope it’s bedmas since everything is brackets

wischi,

Sorry but I don’t follow. Did you read the blog post?

Kowowow,

Those hoity toity with their parentheses don’t know what it is to struggle

tiago,

Damn ragebait posts, it’s always the same recycled operation. They could at least spice it up, like the discussion about absolute value. What’s |a|b|c|?

What I gather from this, is that Geogebra is superior for not allowing ambiguous notation to be parsed 👌

wischi,

Your example with the absolute values is actually linked in the “Even more ambiguous math notations” section.

Geogebra has indeed found a good solution but it only works if you input field supports fractions and a lot of calculators (even CAS like WolframAlpha) don’t support that.

tiago,

Yeah! That’s why I mentioned it, it was a fresh ambiguous notation problem that I’ve never encountered before. Discussions of “is it 1 or 9” get tiring quickly.

At least WA and others tell you how they interpret the input, instead of being a black box (until you get to the manuals). Even though it is obvious in hindsight, I didn’t get why two calculators would yield different results; thanks!

Nice write-up.

cobra89,

While I agree the problem as written is ambiguous and should be written with explicit operators, I have 1 argument to make. In pretty much every other field if we have a question the answer pretty much always ends up being something along the lines of “well the experts do this” or “this professor at this prestigious university says this”, or “the scientific community says”. The fact that this article even states that academic circles and “scientific” calculators use strong juxtaposition, while basic education and basic calculators use weak juxtaposition is interesting. Why do we treat math differently than pretty much every other field? Shouldn’t strong juxtaposition be the precedent and the norm then just how the scientific community sets precedents for literally every other field? We should start saying weak juxtaposition is wrong and just settle on one.

This has been my devil’s advocate argument.

wischi,

I tried to be careful to not suggest that scientist only use strong juxtaposition. They use both but are typically very careful to not write ambiguous stuff and practically never write implicit multiplications between numbers because they just simplify it.

At this point it’s probably to late to really fix it and the only viable option is to be aware why and how this ambiguous and not write it that way.

As stated in the “even more ambiguous math notations” it’s far from the only ambiguous situation and it’s practically impossible (and not really necessary) to fix.

Scientist and engineers also know the issue and navigate around it. It’s really a non-issue for experts and the problem is only how and what the general population is taught.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • memes@lemmy.ml
  • localhost
  • All magazines
  • Loading…
    Loading the web debug toolbar…
    Attempt #