@Prunebutt meant 4.5! and not 4.5. Because it’s not an integer we have to use the gamma function, the extension of the factorial function to get the actual mean between 1 and 9 => 4.5! = 52.3428 which looks about right 🤣
I think you got hit hard by Poe’s Law here. Except it’s more like people couldn’t tell if you were jokingly or genuinely getting your math wrong… Even after you explained you were joking lol
If one doesn’t realize you’re op, the entire thing can be interpreted very differently.
Then “Not sure if sarcastic and woosh, or adding to the joke ಠ_ಠ” could be interpreted as something like “I’m not sure if you are adding to the joke and I’m not understanding it”.
🤣 I wasn’t even sure if I should post it on lemmy. I mainly wrote it so I can post it under other peoples posts that actually are intended to artificially create drama to hopefully show enough people what the actual problems are with those puzzles.
But I probably am a fool and this is not going anywhere because most people won’t read a 30min article about those math problems :-)
“when in doubt” is a bit broad but left to right is a great default for operations with the same priority. There is actually a way to calculate in any order if divisions are converted to multiplications (by using the reciprocal value) and subtractions are converted to additions (by negating the value) that requires at least a little bit of math knowledge and experience so it’s typically not taught until later to prevent even more confusion.
For example this: 6 / 2 * 3 can also be rewritten as 6 * 2⁻¹ * 3 and because multiplication is commutative you can now do it in any order for example like 3 * 6 * 2⁻¹
You can also “rearrange” the order without changing the meaning if you move the correct operation (left to the number) with it (should only be done with explicit multiplication)
6 / 2 * 3 into 6 * 3 / 2 (note that I moved the division with the 2)
You can even bring the two to the front. Just remember that left to the six is an “imaginary” (don’t quote me ^^) multiplication. And because we can’t just move “/2” to the beginning we have to insert a one (empty product - check Wikipedia) like so:
1 / 2 * 6 * 3
This also works for addition and subtraction
7 + 8 - 5
You can move them around if you take the operation left to the number with it. With addition the “imaginary” operation at the beginning is a plus sign and the implicit number you use is zero (empty sum - check Wikipedia)
8 - 5 + 7
or like this
0 - 5 + 8 + 7
because with negative numbers you can use the minus sign to indicate negative numbers you can even drop the leading zero like this
-5 + 8 + 7
That’s not really possible with multiplication because “/2” is not a valid notation for “1/2”
Works on the web page, but looks weird on some mobile app. Markdown is a fucking mess. Some implementation has MathJax support, some have special syntaxes.
What’s especially wild to me is that even the position of “it’s ambiguous” gets almost as much pushback as trying to argue that one of them is universally correct.
Last time this came up it was my position that it was ambiguous and needed clarification and had someone accuse me of taking a prescriptive stance and imposing rules contrary to how things were actually being done. How asking a person what they mean or seeking clarification could possibly be prescriptive is beyond me.
Bonus points, the guy telling me I was being prescriptive was arguing vehemently that implicit multiplication having precedence was correct and to do otherwise was wrong, full stop.
Without any additional parentheses, the division sign is assumed to separate numerators and denominators within a complete expression, in which case you would reduce each separately. It’s very, very marginally ambiguous at best.
👍 That was actually one of the reasons why I wrote this blog post. I wanted to compile a list of points that show as clear as humanity possible that there is no consensus here, even amongst experts.
That probably won’t convince everybody but if that won’t probably nothing will.
When I went to college, I was given a reverse Polish notation calculator. I think there is some (albeit small) advantage of becoming fluent in both PEMDAS and RPN to see the arbitrariness. This kind of arguement is like trying to argue linguistics in a single language.
Btw, I’m not claiming that RPN has any bearing on the meme at hand. Just that there are different standards.
Ambiguity is fine. It would tedious to the point of distraction to enforce writing math without ambiguity. You make note of conventions and you are meant to realize that is just a convention. I’m amazed at the people who are planting their feet to fight for something that what they were taught in third grade as if the world stopped there.
You’re right though. We should definitely teach different conventions. But then what would facebook do for engagement?
I feel like if a blog post presents 2 options and labels one as the “scientific” one… And it is a deserved Label. Then there is probably a easy case to be made that we should teach children how to understand scientific papers and solve the equation in it themselves.
Honestly I feel like it reads better too but that is just me
I’m not sure if I’d call it the “scientific” one. I’d actually say that the weak juxtaposition is just the simple one schools use because they don’t want to confuse everyone. Scientist actually use both and make sure to prevent ambiguity. IMHO the main takeaway is that there is no consensus and one has to be careful to not write ambiguous expressions.
“If you are a student at university, a scientist, engineer, or mathematician you should really try to ask the original author what they meant because strong juxtaposition is pretty common in academic circles, especially if variables are involved like in $a/bc$ instead of numbers.”
I’m a scientist and I’ve only ever encountered strong juxtaposition in quick scribbles where everyone knows the equation already. Normally we’re very careful to use fraction notation (or parentheses) when there’s any possibility of ambiguity. I read the equation and was shocked that anyone would get an answer other than 9.
My comment was directed to the blog post and the claims contained in it.
The blog post claims it is popular in academy, if that is a deserved label, then I don’t understand how the author of the post lands on “there is no good or bad way, they are all valid”. I am in favor of strong juxtaposition but that is not the case that I am making here. Sorry for the confusion.
I found a few typos. In the 2nd paragraph under the section “strong feelings”, you use “than” when it should be “then”. More importantly, when talking about distributive properties, you say x(x+z)=xy+xz. I believe you meant x(y+z)=xy+xz.
Otherwise, I enjoyed that read. I’m embarrassed to say that I did think pemdas meant multiplication came before division, however I’m proud to say that I’ve unconsciously known that it’s important to avoid the ambiguity by putting parentheses everywhere for example when I make formulas in spreadsheets. Which by the way, spreadsheets generally allow multiplication by juxtaposition.
It’s actually fine to do multiplication before division, you just have to be sure about which numbers are intended to be included in the divisor of your fraction!
Thank you so much for taking the time and reading the post. I just fixed the typos, many thanks for pointing them out.
There is nothing really to be embarrassed about and if you look at the comment sections of such viral math posts you can see that you are certainly not the only one. I think that mnemonics that use “MD” and “AS” without grouping like in “PE(MD)(AS)” are really to blame here.
An alternative would be to drop the inverse and only use say multiplication and addition as I suggested with “PEMA” but with “PEMDAS” one basically sets up students for the problem that they think that multiplication comes before division.
Damn ragebait posts, it’s always the same recycled operation. They could at least spice it up, like the discussion about absolute value. What’s |a|b|c|?
What I gather from this, is that Geogebra is superior for not allowing ambiguous notation to be parsed 👌
Your example with the absolute values is actually linked in the “Even more ambiguous math notations” section.
Geogebra has indeed found a good solution but it only works if you input field supports fractions and a lot of calculators (even CAS like WolframAlpha) don’t support that.
Yeah! That’s why I mentioned it, it was a fresh ambiguous notation problem that I’ve never encountered before. Discussions of “is it 1 or 9” get tiring quickly.
At least WA and others tell you how they interpret the input, instead of being a black box (until you get to the manuals). Even though it is obvious in hindsight, I didn’t get why two calculators would yield different results; thanks!
Honestly, I do disagree that the question is ambiguous. The lack of parenthetical separation is itself a choice that informs order of operations. If the answer was meant to be 9, then the 6/2 would be isolated in parenthesis.
It’s covered in the blog, but this is likely due to a bias towards Strong Juxtaposition rules for parentheses rather than Weak. It’s common for those who learned math into advanced algebra/ beginning Calc and beyond, since that’s the usual method for higher math education. But it isn’t “correct”, it’s one of two standard ways of doing it. The ambiguity in the question is intentional and pervasive.
I don’t know what you want, man. The blog’s goal is to describe the problem and why it comes about and your response is “Following my logic, there is no confusion!” when there clearly is confusion in the wider world here. The blog does a good job of narrowing down why there’s confusion, you’re response doesn’t add anything or refute anything. It’s just… you bragging? I’m not certain what your point is.
None of this has a point. We’re talking over a shitpost rant about common use of math symbols. Even the conclusion boils down to it being a context dependent matter of preference. I’m just disagreeing that the original question as posed should be interpreted with weak juxtaposition.
I originally had the same reasoning but came to the opposite conclusion. Multiplication and division have the same precedence, so I read the operations from left to right unless noted otherwise with parentheses. Thus:
6/2=3
3(1+2)=9
For me to read the whole of 2(1+2) as the denominator in a fraction I would expect it to be isolated in parentheses: 6/(2(1+2)).
Reading the blog post, I understand the ambiguity now, but i’m still fascinated that we had the same criticism (no parentheses implies intent) but had opposite conclusions.
It’s hilarious seeing all the genius commenters who didn’t read the linked article and are repeating all the exact answers and arguments that the article rebuts :)
I’m still not used to having combined image and text posts so I usually don’t notice the text portion if it isn’t a big ol’ wall and I hope I’m not the only one.
❤️ True, but I think one of the biggest problems is that it’s pretty long and because you can’t really sense how good/bad/convining the text is it’s always a gamble for everybody if it’s worth reading something for 30min just to find out that the content is garbage.
I hope I did a decent job in explaining the issue(s) but I’m definitely not mad if someone decides that they are not going to read the post and still comment about it.
programming.dev
Active